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Transcription factor-induced reprogramming of specialized cells into other cell types and to pluripotency has
revolutionized our thinking about cell plasticity, differentiation, and stem cells. The recent advances in this
area were enabled by the confluence of a number of experimental breakthroughs that took place over the
past 60 years. In this article, I give a historical and personal perspective of the events that set the stage for
our current understanding of cellular reprogramming.
I still remember feeling electrified when at the end of 1987,

browsing through the most recent issue of Cell, I found an article

in which Davis, Weintraub, and Lassar reported the cloning of

Myod, a gene capable of converting fibroblasts into muscle cells

(Davis et al., 1987). Although this paper received much less

attention than Yamanaka’s description 19 years later of reprog-

ramming somatic cells to pluripotency (also called ‘‘reprogram-

ming’’ or ‘‘induced pluripotent stem cell [iPSC] reprogramming’’)

(Takahashi and Yamanaka, 2006), it foreshadowed the revolution

that was to take place in the stem cell and differentiation fields

in the years to come. For the purpose of this perspective, I will

designate transcription factor-induced cell fate conversion of

a somatic cell, whether it is by differentiation, retrodifferentiation,

or transdifferentiation, as being under the umbrella of ‘‘transdif-

ferentiation.’’ It seems likely that these processes occur by

similar mechanisms with the possible exception of retrodifferen-

tiation, which might be mechanistically more related to reprog-

ramming to pluripotency. Our current view of the degree towhich

transcription factors can dictate and alter the differentiation

phenotype of mammalian cells rests on the groundbreaking

work of many investigators over the past five decades. Several

conceptual and technological breakthroughs were instrumental

for the discovery of both transdifferentiation and iPSC reprog-

ramming (Figure 1). In addition to outlining these advances, I

will also discuss how they contributed to the intellectual progress

that led us to where we are today.

Seminal Experiments and Concepts in Reprogramming
A number of technical and conceptual advances have been

crucial to the birth of the reprogramming field; some were

more general, whereas others contributed more specifically

to our understanding of either transdifferentiation or reprog-

ramming to pluripotency. The concept of differentiation plas-

ticity, for instance, first derived from somatic cell nuclear

transfer experiments, was particularly influential for the

discovery of iPSC reprogramming, as was the development

of embryonic stem cell lines. Other experiments, showing

transdetermination of Drosophila imaginal discs, the properties

of retroviral oncogenes, reactivation of differentiation genes in

heterokaryons, and transcription factors establishing regula-

tory circuits also had a significant impact. Here, I provide

a historical perspective of some of these key experimental
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and conceptual breakthroughs and discuss their influence on

the field.

Somatic Cell Cloning

Thediscovery that animals canbecloned fromsomatic cell nuclei

sparked the idea that itmight eventually bepossible to identify the

cytoplasmic determinants that cause reprogramming. The story

began in 1918 when the developmental biologist Hans Spemann

working at the University of Freiburg wondered whether the

nuclei of a dividing zygote remained totipotent. In what now

seems to be an almost impossibly simple experiment, Spemann

caused a constriction in a 16-cell salamander embryo by tight-

ening a baby’s hair around the midline and pinched off a single

nucleus into one side of the embryo. Subsequently, each of these

halves generated a viable animal hatching from the same egg,

showing that the nucleus remains totipotent for at least four divi-

sions. Although in 1938 Spemann recognized that it would be

a ‘‘fantastic experiment’’ to use nuclear transplantation to ask

whether differentiated cells are inherently plastic, it took another

14 years for Briggs and King to successfully develop the nuclear

transplantation technique, using Rana pipiens (Briggs and King,

1952). They found that nuclei from blastocyts could generate

swimming tadpoles but that more specialized cells from the

gastrula stage onward progressively lost their potential for plurip-

otency, forming aberrant tadpoles at best (King and Briggs,

1955). They therefore concluded that it is impossible to produce

a clone from the nucleus of an adult cell and that the cell’s genetic

potential diminishes during development. John Gurdon later

challenged those findings, using Xenopus laevis as a model

animal, and found that after serial nuclear transfers, nuclei

derived from cultured intestinal cells of tadpoles resulted in the

formation of mature fertile animals (Gurdon et al., 1958; Gurdon

and Uehlinger, 1966). However, subsequent experiments with

nuclei from different types of adult Xenopus cells only yielded

swimming tadpoles (Gurdon andByrne, 2003) and it took another

30 years before animal cloning could be obtained in another

vertebrate species. Ian Wilmut and colleagues at the University

of Edinburgh famously created Dolly the sheep, after transplant-

ing the nuclei of cultured epithelial cells into enucleated oocytes

(Wilmut et al., 1997), and only a year later the first mice were

cloned (Wakayama et al., 1998). Why did it take 30 years to

make the leap from Xenopus to mammals? It now appears that

the key to success is related to the type of recipient cell used
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Figure 1. Research Enabling the Discoveries of Transdifferentiation and Reprogramming to Pluripotency
Key advances in the discovery of transdifferentiation and reprogramming to pluripotency are highlighted in the dark blue and green areas, respectively. The light
blue and green areas summarize experiments especially relevant to either transdifferentiation or to reprogramming, respectively, and the dark gray area covers
nuclear transfer. The findings listed in the light gray areas contributed concepts and technologies important for these processes, as indicated by the arrows on the
left. Several of these contributions (especially the more technological ones, at the bottom) were important for both discoveries, as discussed throughout the text.
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for enucleation. Earlier attempts to clone mice using fertilized

zygotes failed (McGrath and Solter, 1984), probably because

these cells were in interphase and the nuclear factors were re-
STEM
tained in the nucleus. In contrast, successful experiments with

sheep, mice, and other mammalian species performed more

recently used unfertilized meiotic stage II nuclei, in which the
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Figure 2. Effect of the v-Myb Oncogene on the Differentiation of
Myeloid Target Cells
The figure illustrates the ability of v-Myb to block the differentiation of myeloid
cells, using the ts21 temperature-sensitive mutant of E26 leukemia virus,
carrying a point mutation in the DNA binding domain of v-Myb (Frykberg et al.,
1988). Micrographs depict myeloblasts transformed at 37�C with ts21 virus
and macrophages obtained after shifting the culture for 5 days to 42�C (the
physiologic temperature of chickens). The top two panels represent phase
micrographs of live cells, the lower of fixed and HE-stained cells preincubated
with E. coli to illustrate phagocytic capacity of cells shifted to 42�C (Beug et al.,
1984). The small dark particles inside the cells represent bacteria.
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nuclear factors are in the cytoplasm because the nuclear

membrane had broken down (reviewed in Egli et al., 2007).

InGurdon andWilmut’s experiments, the frequency of success

was 1% or less (Wilmut et al., 1997; reviewed in Gurdon and By-

rne, 2003).Wakayamaandcolleagues succeeded in cloningmice

only when using cumulus cell nuclei but none of the other cell

types tested (Wakayama et al., 1998). A gnawing doubt therefore

persisted that the differentiated cells used to generate adult

animals contained a small proportion of stem cells and that

cumulus cells are perhaps stem cell-like, whereas truly differen-

tiated cells cannot be reprogrammed. These doubts were put

to rest when Konrad Hochedlinger and Rudolf Jaenisch at MIT

in Cambridge (MA) succeeded in generating mouse blastocysts

and ESCs derived from the nuclei of adult B and T cells. Most

strikingly, they obtained viablemice inwhich all tissues contained

either immunoglobulin or T cell receptor rearrangements (Ho-

chedlinger and Jaenisch, 2002). Another issue that had long re-

mained unresolved is whether human somatic cells can also be

reprogrammed via nuclear transfer. Until this year, somatic cell

nuclear transfer into enucleated human eggs had never resulted

in successful generation of blastocysts; cells typically arrested at

the 4 to 8cell stage.However, very recentlyDieter Egli andcollab-

orators at the New York Stem Cell Foundation in New York re-

ported that when the oocyte nucleus is left in place it is possible

to generate human blastocysts after transplantation of skin cell-

derived nuclei. These blastocysts in turn generated stable triploid

human ESC lines whose somatic cell nuclei were reprogrammed

to resemble ESCs (Noggle et al., 2011). These experiments

showed that it is possible, in principle, to reprogram human

somatic cells up to at least the blastocyst stage.

Transdetermination

As a student in Tuebingen in the late 1960s, I was fascinated by

a Scientific American article from Ernst Hadorn of the University

of Zürich on the transdetermination of imaginal discs in

Drosophila (Hadorn, 1968). Imaginal discs are primitive larval

structures destined to become appendages in the adult, such

as wings, legs, genitals, or antennae. These disks, if dissociated

into single cells and serially transplanted to ectopic sites in the

larvae, can change their destiny so that, for example, cells

from a leg disk can now form a wing. There is also directionality;

to ‘‘transdetermine’’ genital disks into wings they must first go

through a stage fated either to a leg or an antenna (Ursprung

and Hadorn, 1962). In today’s interpretation, dividing imaginal

disc cells are susceptible to environmental cues that can alter

their fate, ultimately through the activation of cell-instructive

transcription factors (‘‘selector genes’’) whose ectopic expres-

sion can short-circuit the process. For example, ectopic expres-

sion of the eyeless gene (Pax6) can induce the formation of eye

structures in various appendages of the fly (Halder et al.,

1995), and similar effects have been observedwith other selector

genes, including various Hox family members, distalless and

vestigial (Maves and Schubiger, 2003). Although these spectac-

ular in vivo experiments could not address the question whether

master regulators act only in progenitors or are also capable of

reprogramming differentiated cells, they put an early spotlight

on the question of the stability of the differentiated state.

Oncogenic Transcription Factors

Although viral oncogenes are not commonly associated with cell

reprogramming, key concepts in this field foreshadowed several
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observations made subsequently with lineage-instructive tran-

scription factors. The first oncogene, v-Src, was discovered in

1976 by Dominique Stehelin, Michael Bishop, Harold Varmus,

and Peter Vogt at the University of San Francisco as a cellular

gene carried by Rous sarcoma virus (Stehelin et al., 1976),

work for which Bishop and Varmus were awarded the Nobel

Prize 12 years later. Collaborating with Dominique Stehelin and

Martine Roussel at the University of Lille (France), my postdoc

Hartmut Beug and I found that the avian leukemia virus E26

and the avianmyeloblastosis virus AMV contain the v-Myb onco-

gene (Roussel et al., 1979), corresponding to a transcription

factor required for the formation of fetal hematopoietic stem cells

(Mucenski et al., 1991). The two v-Myb-containing viruses selec-

tively transform myeloblasts, precursors of granulocytes and

macrophages (Beug et al., 1979). Several findings suggest that

v-Myb reprograms the cell state of myeloid cells: specific point

mutations in the v-Myb DNA binding domain change the gene’s

transformation specificity, resulting in the proliferation of

granulocytes instead of myeloblasts (Introna et al., 1990). In

addition, as for the combinatorial action of transcription factors

during reprogramming, v-Myb cooperates with another onco-

genic transcription factor, v-Ets, in enhancing the transformed

phenotype (Metz and Graf, 1991). Importantly, v-Myb also

induces the dedifferentiation of macrophages into myeloblasts

(Beug et al., 1987; Ness et al., 1987). However, unlike for tran-

scription factor-induced transdifferentiation, v-Myb needs to

be continuously expressed to maintain the altered cell pheno-

type because when inactivated in myeloblasts, these differen-

tiate into functional macrophages (Figure 2; Beug et al., 1984),

showing that the oncogene specifically blocks, rather than

induces, the differentiation of myeloid cells. This suggests that
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v-Myb perturbs lineage-specific regulatory networks, linking cell

proliferation and differentiation. The observed v-Myb transgene

dependence of cell transformation seems to be a common

feature of oncogenes, because in many cancers, inactivation

of the causative oncogene, such as cyclin D1 or Myc, induces

tumor inhibition (Arber et al., 1997; Jain et al., 2002). However,

relief from such ‘‘oncogene addiction’’ may not necessarily be

due to the terminal differentiation of the transformed cells,

because shrinking of tumors is typically associated with cell

death.

Heterokaryons

The analysis of heterokaryons between embryonic stem cells

and various types of somatic cells had a strong impact on the

discovery of iPSC reprogramming. Early experiments in which

R.A. Miller and Frank Ruddle from Yale University (New Haven,

CO) fused embryonal carcinoma cells with thymus cells and

injected them into mice revealed the formation of teratocarci-

nomas containing a range of differentiated tissues (Miller and

Ruddle, 1976) and suggested that pluripotency is dominant.

Tada and colleagues reached similar conclusions after fusing

T cells with ESCs (Tada et al., 2001). The observation of ESC

dominance in heterokaryons raised the possibility that ESCs,

like oocytes, contain trans-acting factors capable of reprogram-

ming somatic cell nuclei (for reviews see Egli et al., 2007; Piccolo

et al., 2011; Yamanaka and Blau, 2010).

A separate line of research showed that genes repressed in

differentiated cells can be reactivated by experimental manipu-

lations. Henry Harris at Oxford University showed that in

hybrids of HeLa cells and chicken red blood cells (which are

nucleated), the red cell nuclei swelled and started synthesizing

RNA (Harris and Watkins, 1965). However, these early experi-

ments failed to report reactivation of differentiation genes,

concentrating instead on cell proliferation, dominance of tumor-

igenesis, and exchange of nuclear membrane components.

Then, almost two decades later, Helen Blau, a young faculty

member at Stanford University with a background in genetic

counseling, fused human amniocytes and mouse muscle cells

in an attempt to develop a prenatal diagnostic test for tissue-

specific diseases. To her astonishment, she found that in

heterokaryons (which maintained separate nuclei), several

human muscle-specific genes became reactivated within

24 hr after fusion, under conditions where there was no DNA

replication (Blau et al., 1983). Subsequently she extended these

findings to human keratinocytes and hepatocytes, which like-

wise reactivated muscle genes after fusion with mouse muscle

and also found that the relative dosage of ‘‘factors,’’ resulting

from the skewed nuclear ratio of the fused cells, determined

the direction of differentiation, i.e., whether nuclear genes

were silenced or activated (Blau et al., 1985). ‘‘I was very

excited, as these discoveries brought mammalian differentia-

tion and gene regulation under the broad umbrella of the prin-

ciples adduced in prokaryotes by the great French scientists

Jacob and Monod, and by Ptashne in the U.S.’’ (H. Blau,

personal communication). In an influential essay, Blau went

on to propose that differentiation requires continued regulation,

by both positive and negative regulators (Blau and Baltimore,

1991). At the time this suggestion seemed bold, but transdiffer-

entiation and iPSC reprogramming experiments have since fully

supported the idea.
STEM
Transcription Factors and Regulatory Switches

Studies of regulatory circuits in prokaryotes, yeast, Drosophila,

and sea urchins also left a permanent imprint on thinking within

the reprogramming field. The influential work of Francois Jacob

and Jacques Monod at the Institute Pasteur in Paris examining

how Escherichia coli digests lactose eventually culminated in

the Operon model. This model gave a plausible explanation for

gene regulation through a circuit containing a cis element (the

operator) and a trans-acting factor acting as a repressor when

lactose is absent (Jacob and Monod, 1961), a concept for which

Jacob and Monod won the Nobel Prize only 4 years later.

Another regulatory circuit, which resembles those later identified

for eukaryotes, was discovered in bacteriophage lambda. This

phage can exist in either a lytic state or a lysogenic (dormant)

state that is controlled by a repressor that binds with high affinity

to specific DNA sequences and is responsive to signaling by

external factors, thus permitting adaptation to changing environ-

mental conditions. This simple system thus represents a bi-

stable switch that evokes the picture of a transcription factor-

driven binary decision during lineage commitment of mammalian

cells (Ptashne, 1967, 2011). The similarities to the phage run

even deeper: much as GATA-1 antagonizes PU.1 during myeloid

to erythroid lineage reprogramming (Graf and Enver, 2009), the

same molecule that activates the genetic program for lysogeny

represses the genetic program of the lytic cycle and stabilizes

the switch by maintaining its own expression, thus perpetuating

a defined gene expression state. It is very gratifying and inspiring

to understand a switching mechanism in great molecular detail,

and so I always keep a copy of Mark Ptashne’s book A Genetic

Switch within reach of my desk. Although vertebrates are vastly

more complex, as work by Eric Davidson on sea urchins has

impressively documented (Davidson, 2010), the underlying

principles remain basically the same.

Embryonic Stem Cell Lines

An early advance was the demonstration that single cells from

a teratoma cell line are pluripotent, capable of generating tera-

tomas containing cells from all three major germ layers (Klein-

smith and Pierce, 1964). The development of ESCs provided

both a conceptual breakthrough and an indispensable tool for

the discovery of iPSC reprogramming. The development of

ESCs as the main pillar on which reprogramming to pluripotency

is based has been reviewed extensively and the reader is referred

to a recent historical review about the subject (Evans, 2011).

Nevertheless, the two most important breakthroughs should be

mentioned here. The first was the establishment of mouse ESC

lines by Martin Evans and Matthew Kaufman at the University of

Cambridge (UK) and by Gail Martin at the University of San Fran-

cisco (Evans and Kaufman, 1981; Martin, 1981). Martin Evans

shared the Nobel Prize with Capecchi and Smithies in 2007 for

this discovery. The second breakthrough was the establishment,

17 years later, of human ESCs by James Thomson, at the Univer-

sity ofWisconsin (Madison,WI) (Thomsonet al., 1998). ShinyaYa-

manakamentioned thatThomson’sdiscoverywasoneofhismain

motivations toattempt reprogrammingfibroblasts intopluripotent

cells (http://www.youtube.com/watch?v=AD1sZU1yk-Y).

By transferring mouse ESCs into a blastocyst that is then im-

planted in vivo, they can contribute to the germline and therefore

after breeding can generate animals entirely derived from the

ESCs. This technique has become the gold standard for the
Cell Stem Cell 9, December 2, 2011 ª2011 Elsevier Inc. 507
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pluripotency, or even totipotency, of iPSCs, especially when

using the technology of tetraploidmorula aggregation developed

by Andras Nagy and Janet Rossant from the Samuel Lunenfeld

Research Institute, Mount Sinai Hospital (Toronto, ON, Canada)

(Nagy et al., 1990). The fact that ESCs can also be induced to

differentiate in vitro into a large number of different cell types

enabled the identification of transcription factors that are essen-

tial for the maintenance of their phenotype (Nichols et al., 1998),

such as Oct4, which is expressed in preimplantation mouse

embryos (Scholer et al., 1990). ESCs also represent a key tech-

nological advance that provided important cellular parameters,

such as growth conditions and markers, which could be used

as a blueprint for the cells to be generated by reprogramming.

Reprogramming Technologies
Aside from the conceptual advances discussed so far and the

development over the past five decades of basic tools for cellular

and molecular biology, such as tissue-culture methods with

defined media, restriction enzymes, molecular cloning, and

DNA sequencing, a number of technologies, discussed below,

were more specifically required for the discoveries of transdiffer-

entiation and reprogramming to pluripotency.

Growth Factors and Stromal Cells

The first fibroblast cultures grown in defined medium needed to

be supplemented with bovine serum (which we now know

contain a number of growth factors such as EGF, PDGF, and

FGF), and it soon became evident that many specialized cell

types require additional tissue-specific growth factors. The first

growth factor identified, nerve growth factor, was described by

Rita Levi-Montalcini and Viktor Hamburger at Washington

University (St. Louis, MO), who discovered that conditioned

medium from a tumor cell line triggered the outgrowth of chick

neurons in culture (Levi-Montalcini and Hamburger, 1951).

Levi-Montalcini shared the Nobel Prize in 1986 with Stanley

Cohen, who purified the factor. We have since learned that

specialized cells require specific environments (niches) to

develop in the body. These niches consist of both soluble factors

and direct cell-cell interactions that can activate specific recep-

tors, thus triggering signaling pathways. The signaling pathways

in turn ultimately activate transcription factors that regulate

genes involved in differentiation and growth control, among

other cellular parameters (Jones and Wagers, 2008). The first

example of the lineage-instructive effect of cytokine receptors

was discovered when the IL-2 and GM-CSF receptors were

ectopically expressed in lymphoid-committed progenitors. After

exposure to GM-CSF, the cells acquired a myeloid fate,

producing granulocyte and macrophage colonies, and lost their

lymphoid potential (Kondo et al., 2000). It is likely that this cell

fate change was produced by activation of C/EBPa in these

cells, known to act as a powerful myeloid lineage-instructive

transcription factor (Xie et al., 2004). Even more directly, time-

lapse recordings showed that bipotent myeloid precursors

treated with M-CSF differentiated preferentially into macro-

phages while G-CSF induced them to become granulocytes

(Rieger et al., 2009), putting a long-lasting controversy to rest

(Enver et al., 1998; Metcalf, 1998). Without detailed knowledge

about the growth requirements of specialized cells, it would

not be possible to perform transcription factor-induced transdif-

ferentiation experiments. For example, the conversion of pre-B
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cells into macrophages by C/EBPa required cytokines and

stromal cells appropriate for both B cell and macrophage devel-

opment (see below) (Xie et al., 2004). Cytokines also had an

important role in reprogramming to pluripotency, because

murine iPSCs, like ESCs, require LIF. The discovery of LIF as

a factor essential for ESC growth and maintenance of pluripo-

tency was made in 1988 at the University of Oxford and at the

European Molecular Laboratory in Heidelberg (Smith et al.,

1988;Williams et al., 1988). Later, Austin Smith and collaborators

at the University of Cambridge (UK) found that inhibitors of GSK3

and of phosphorylated ERK can replace LIF in serum-free

medium, leading to the proposal that these conditions maintain

ESCs in a self-renewing ground state (Ying et al., 2008).

Retroviruses, Reverse Transcriptase,

and the Transduction of Cellular Genes

RNA tumor viruses, later called retroviruses, provided essential

toolkits for reprogrammers. The way these viruses replicate re-

mained a mystery for a long time. Then, in 1970, Howard Temin

at the University of Wisconsin and David Baltimore at MIT

(Cambridge, MA) described an enzyme contained in RNA tumor

viruses that transcribes RNA into cDNA (Baltimore, 1970; Temin

and Mizutani, 1970). The discovery of reverse transcriptase, for

which Temin and Baltimore received the Nobel Prize in 1975

(shared with Renato Dulbecco), showed that retroviruses are

unique among animal viruses in that they can integrate into the

host’s genome and can behave as endogenous DNA. Based

on this knowledge, Rudolf Jaenisch generated the first trans-

genic mice by obtaining germline integration of a mouse retro-

virus (Jaenisch, 1976). Of course, modern research on gene

regulation, differentiation, and cell reprogramming would be un-

thinkable without the existence of reverse transcriptase with

which to synthesize cDNA. The second important technological

contribution of retroviruses is their natural ability to transduce

cellular genes, thus making them ideally suited to introduce

genes of interest into almost any dividing cell type and at high

efficiencies. The first retroviral vectors were developed by Con-

stance Cepko and Richard Mulligan at the Whitehead Institute of

MIT (Cambridge, MA) (Cepko et al., 1984). Lentiviral vectors,

which were developed more recently (Naldini et al., 1996),

have the advantage that they can infect even nondividing cells.

The use of retro- and lentiviral vectors for the combinatorial

expression of transcription factors has greatly accelerated if

not critically enabled the discovery of reprogramming to pluripo-

tency and of transdifferentiation.

Mouse Genetic Engineering

One of the artifacts that can obscure claims of transdifferentia-

tion is the presence in the starting population of a rare cell

selected for under the experimental conditions. The advent of

mouse genetic engineering made it possible to test such claims

rigorously by the use of lineage-tracing experiments. The most

fundamental discovery was made by the laboratories of Mario

Capecchi at the University of Utah and Oliver Smithies at the

University of North Carolina (Chapel Hill) in 1989,who succeeded

in deleting specific genes in ESCs by homologous recombination

and then used these cells to generate the first knockout mice

(Capecchi, 1989; Koller and Smithies, 1989). For their work,

Capecchi and Smithies shared the Nobel Prize with Evans in

2007. Then, Klaus Rajewsky’s group at the University of Cologne

in Germany developed the Cre-Lox technology for mice by
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inserting the bacterial recombinase Cre in ESCs in loci controlled

in a tissue-specific manner (Gu et al., 1994). Crossing such mice

expressing Cre in distinct tissues or lineages with mice contain-

ing a reporter gene repressed by a stop cassette flanked by LoxP

sites inserted into the ubiquitously expressed Rosa26 gene (Sor-

iano, 1999) permits lineage-tracing experiments (Zinyk et al.,

1998). For example, employing a B cell-specific lineage tracing

mousemade it possible to show that mature B cells in the spleen

can be transdifferentiated in vivo into macrophages by C/EBPa

(Xie et al., 2004). Another application of gene engineering, which

was singularly important for the discovery of iPSC reprogram-

ming, was the generation of a mouse line with a ‘‘knockin’’ of

a reporter construct (lacZ/neoR) into the ESC-specific Fbx15

locus. This permitted the selection of reprogrammed cells that

express this marker, facilitating the isolation of the first iPSC

colonies (Takahashi and Yamanaka, 2006). Finally, methods to

express transcription factors in an inducible manner have

become versatile tools for reprogramming experiments. The first

such tool was developed in 1988 by the laboratory of Keith

Yamamoto at the University of San Francisco. This group

showed that the estrogen receptor hormone binding domain,

when fused to a transcription factor (E1A), can confer inducibility

by estrogen or related drugs, through shuttling of an inactive

form of the fusion protein from the cytoplasm into the nucleus

(Picard et al., 1988). The second tool was developed in 1995

by Herrmann Bujard and collaborators at the University of Hei-

delberg (Germany) who adapted the tetracycline-dependent

repressor from E. coli to mammalian cells. Treatment with doxy-

cycline of cells expressing the Tet transactivator as well as genes

that contain the Tet operator permits gene activation and

repression in a reversible manner (Gossen et al., 1995). Both

induction methods work not only in cell culture but also in genet-

ically modified mice. For example, experiments showing that

C/EBPa is only needed transiently to induce immune cell trans-

differentiation have used an estrogen receptor fusion protein

(Bussmann et al., 2009), whereas similar experiments with Ya-

manaka factors used the doxycyclin system (Stadtfeld et al.,

2008). And ‘‘reprogrammable mice’’ have been generated by

inserting Tet operator-containing Yamanaka factors constructs

as well as a transgene encoding the tetracycline transactivator.

With thesemice, all tissues can be interrogated in vitro and in vivo

by doxycycline treatment for their response to the reprogram-

ming factors (Stadtfeld et al., 2010; Wernig et al., 2008).

Transdifferentiation: From MyoD to Inducing Neurons
The discovery that it is possible to convert one cell type into

another was not made in a single experiment, such as the first

description of iPSC reprogramming. Instead, it occurred in incre-

ments that started from the directed differentiation of fibroblasts

into muscle cells by Myod, followed by the demonstration that

committed and fully differentiated cells can be switched within

the hematopoietic system, and then finally finding that cell types

from different germ layers can be interconverted. These experi-

ments and developments are discussed below.

The MyoD Story

The main observation that led to the discovery of Myod gene is

a classical example of serendipidity in science. In 1973 Peter

Jones, working at the Children’s Hospital in Los Angeles, was

performing a screen for the effect of chemotherapeutic drugs
STEM
on cultured fibroblasts when ‘‘.a large mold seemed to be

growing in a dish exposed to azacytidine, a new drug from Cze-

choslovakia. When I examined the presumedmold I was amazed

to see a huge syncytium of multinucleated cells visible to the

naked eye. a total switch of phenotype into muscle’’ (Jones,

2011). In addition to muscle, the drug, 5-azacytidine (AzaC),

also induced the differentiation of the 10T1/2 fibroblasts into

adipocytes and chondrocytes (Taylor and Jones, 1979), prob-

ably because this cell line is an immortalized mesenchymal

stem cell. It did not take Jones long to discover that AzaCworked

through the inhibition of DNA methylation (Jones and Taylor,

1980), although the relevant target gene would not be revealed

for several years. Enter Harold Weintraub, a young faculty

member at the Fred Hutchinson Research Center in Seattle,

interested in epigenetic changes during differentiation, who

had found that the chromatin of globin genes became accessible

to DNase1 during the transition from avian red blood cell precur-

sors to their differentiated derivatives via an inducible system

that we had developed (Graf et al., 1978; Weintraub et al.,

1982). Weintraub had trained under Howard Holtzer, a muscle

development researcher at the University of Pennsylvania who

postulated that differentiation requires ‘‘master switch’’ genes

separate from those that regulate housekeeping genes; there-

fore, the stage was set for when Andrew Lassar joined Wein-

traub’s lab as a postdoc in 1984 and proposed to test whether

Jones’ AzaC-treated 10T1/2 fibroblasts expressed a gene cap-

able of inducing muscle differentiation. Indeed, by using cDNA

transfection (Graham and van der Eb, 1973), they discovered

that the drug-treated cells contained an RNA that induced

muscle formation (Lassar et al., 1986). A year later they suc-

ceeded in cloning a cDNAwithmuscle-inducing activity and after

sequencing found that it encoded the helix-loop-helix transcrip-

tion factor MyoD (Davis et al., 1987).

Stephen Tapscott relates the moment of the discovery: ‘‘I was

working in the tissue culture room on a day when Andrew Lassar

was scanning plates of 10T1/2 fibroblasts transfected with

cDNAs from his subtraction screen. He found a plate full of fused

cells and became very excited. He showed them to me, called in

Hal [Weintraub] and others. We then gathered by the chalkboard

and Andrew and Hal soon turned the discussion to what artifact

could have caused the outcome. After Hal was walking away

from the group he commented, ‘This is a really sick profession.

We finally find what we have been looking for for so long and

the first thing we need to do is try to disprove our finding, try to

show how our logic or experiments are wrong’ ’’ (S. Tapscott,

personal communication). Subsequent experiments showed

that Myod can also induce the conversion of pigment, nerve,

fat, and liver cell lines into cells that express muscle markers,

but the muscle cells looked aberrant and were generated only

at very low frequencies (Weintraub et al., 1989). Tapscott and

colleagues went on to show that AzaC inhibits methylation of

Myod in 10T1/2 cells, thereby inducing reactivation of the

gene, as suggested by Jones’ earlier findings (Tapscott, 2005).

Ironically perhaps, the methylation of Myod in 10T1/2 cells

appears to be an artifact of the cell line because the gene is

not methylated in primary fibroblasts, where it is repressed by

a different mechanism (reviewed in Tapscott, 2005). This series

of coincidences illustrates how chance, luck, and a keen eye

often result in important advances in science.
Cell Stem Cell 9, December 2, 2011 ª2011 Elsevier Inc. 509

1030



Cell Stem Cell

Perspective
Transcription Factor-Induced Blood

Cell Transdifferentiation

My work on mechanisms of leukemogenesis by acute avian

leukemiaviruses ledme tostudyhowcellsdifferentiate. I had found

that the v-Myb-v-Ets-containing E26 leukemia virus induces the

proliferation of myeloblasts as well as MEP cells (megakaryocyte-

erythrocyte precursors). MEPs turned out to be a simple surrogate

‘‘stem cell’’ system because they could be converted into myelo-

blasts (andeosinophils)byactivating theRaspathway. Importantly,

during this process, MEPs downregulated the erythroid transcrip-

tion factor GATA-1 (Graf et al., 1992). When Holger Kulessa joined

my labasagraduatestudentat theEuropeanMolecularLaboratory

inHeidelberg in1993, hestudied the effect of ectopic expressionof

GATA-1 in myeloblasts. My hope was that we would find upregu-

lation of MEP markers, reproducing Weintraub’s findings in blood

cells. That was indeed the case, but to our great surprise the cells

also downregulated a myeloid surface antigen and converted into

MEP cells, as well as eosinophils in a dose-dependent manner

(Kulessa et al., 1995). Our findings immediately suggested that

transcription factors not only activate novel gene expression

programs but also repress the programs specific to the starting

cell, a hallmark of transdifferentiation. The other insight was that

inducing the commitment to differentiation does not require a set

of separate ‘‘master regulators’’ because GATA-1 was known to

activate hemoglobin expression (Orkin, 1990). Later, we found

thatGATA-1 represses themyeloid regulatorPU.1and thatoverex-

pression of PU.1 in MEP cells converts them into myeloblasts

(Nerlov andGraf, 1998). These findings led us to propose that tran-

scription factor cross-antagonisms, by repressing alternative cell

fate options, are a driving force for binary decisions during cell

fate specification (Graf, 2002). However, these experiments did

not address thequestionofwhether normalprogenitors areequally

plastic. Aswill bediscussed later, Tariq Enver showed that they are

(Heyworth et al., 2002).

Can mature hematopoietic cells also be induced to switch

lineage? We stumbled onto the answer in 2003, when testing

the erroneous hypothesis that the acute myeloid leukemia-asso-

ciated fusion oncoprotein AML-ETO can reprogram lymphoid

cells into myeloid cells. Infecting a pre-B cell line with the fusion

oncoprotein showed no effect. However, unexpectedly, among

the transcription factors that we used as controls, the granulo-

cyte/macrophage-restricted transcription factor C/EBPa induced

adramatic,dosage-dependent switch intomyeloidcells,while the

erythroid lineage-associated factor FOG-1 had no effect. C/EBPa

convertednearly100%ofprimarypro-andpre-Bcellsandaround

35% of mature, antibody-producing B cells into macrophages.

Importantly, the reprogrammed macrophages, which retain

immunoglobulin rearrangements, are functional by a number of

criteria, including Fcg receptor-dependent and -independent

phagocytosis (Di Tullio et al., 2011; Xie et al., 2004). As work by

Dan Tenen showed, ablation of C/EBPa in hematopoietic cells

results in the loss of granulocytes/macrophages and the prolifer-

ation of immature cells (Zhang et al., 2004). Furthermore, C/EBPa

is mutated in about 10% of acute myeloid leukemia (Wouters

et al., 2009), suggesting that it can act as a tumor suppressor.

A Forgotten Tissue-Culture Dish

and Retrodifferentiation of B Cells

The experiments described so far suggest that tissue-restricted

transcription factors can dictate cell fate, but what happens to
510 Cell Stem Cell 9, December 2, 2011 ª2011 Elsevier Inc.
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committed cells in which a master regulator is inactivated? The

answer came from yet another chance discovery. Stephen

Nutt, an Australian postdoc in Meinrad Busslinger’s laboratory

at the Institute for Molecular Pathology in Vienna, was asked to

analyze a mouse knockout model lacking the B cell-specific

regulator Pax5. He found that B lineage cells were blocked at

the pro-B cell stage and could be propagated in the presence

of the early lymphoid cytokine IL-7. One day, returning from

vacation, he cleaned out the incubator and found a dish of

forgotten Pax5-defective pro-B cells. Based on an instinct that

proved decisive, he put them under the microscope and discov-

ered that they had turned into macrophages! As he and Bus-

slinger later described, Pax5�/� pro-B cells selectively express

genes of alternative lineages and can differentiate into functional

macrophages, osteoclasts, dendritic cells, granulocytes, and

natural killer cells when cultured with the appropriate cytokines

(Nutt et al., 1999) and into T cells when transplanted into immu-

nodeficient mice (Rolink et al., 1999). The forgotten dish of

Pax5-defective pro-B cells had been cocultured with M-CSF-

producing stromal cells; once the culture ran out of IL-7, the

M-CSF induced macrophage differentiation (M. Busslinger,

personal communication). These observations could still have

been due to a developmental blockage of Pax5�/�B cell progen-

itors at a very early stage, generating an abnormal type of multi-

potent progenitor. To address that possibility, Busslinger’s

group also looked at what happens when Pax5 is deleted in fully

differentiated B cells and found that they reacquire T cell poten-

tial, as revealed by transplantation into immunodeficient mice

(Cobaleda et al., 2007). Here it needs to be stressed that the

effect of Pax5 ablation appears to differ from the transdifferentia-

tion induced by ectopic expression of lineage-restricted tran-

scription factor(s) or ablation of Bcl11b (see below), which occur

at much higher frequencies and do not involve overt retrodiffer-

entiation (see for example Di Tullio et al., 2011).

Cell Conversions with Therapeutic Potential

Although of considerable academic interest, the blood cell

switching examples discussed so far have no obvious thera-

peutic applications. A breakthrough in this area was made in

2008 by Douglas Melton and colleagues at Harvard University

(Cambridge, MA) who showed that insulin-producing cells in

the pancreas could be obtained by in vivo transdifferentiation

(Zhou et al., 2008). These authors screened 1,100 transcription

factors by in situ hybridization in the pancreas and identified

20 that are expressed in mature b cells and their precursors, of

which 9 led to b cell phenotypes whenmutated. By using adeno-

viral vectors to introduce a mixture of these 9 factors into the

pancreas of immunodeficient mice, they noted an increase in

the number of b cells, which they could attribute to the effects

of Ngn3, Pdx1, and Mafa. Lineage-tracing experiments showed

that these three factors converted >20% of endocrine cells into

cells closely resembling b cells, but they had no effect when

expressed singly or as a combination in fibroblasts. Remarkably,

by using a mouse model for diabetes type one, Zhou et al. (2008)

showed that the in vivo transdifferentiation alleviated the hyper-

glycemia caused by insulin deficiency.

Brown fat cells are specialized to dissipate chemical energy in

the form of heat, as a physiological defense against cold and

obesity. Bruce Spiegelman and colleagues at the Dana Farber

Center of Harvard University have shown that these cells derive



Figure 3. Examples of Transcription Factor-Induced Transdifferentiation
The examples shown are discussed throughout the text. Models (left to right) based on work from Davis et al. (1987), Kulessa et al. (1995), Xie et al. (2004), Zhou
et al. (2008), Kajimura et al. (2009), Ieda et al. (2010), Li et al. (2010a) and (2010b), and Vierbuchen et al. (2010).
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from a muscle progenitor by the action of PRDM16 (Seale et al.,

2008). More recently, Kajimura et al. (2009) identified C/EBPb as

a partner of PRDM16 and showed that these two transcription

factors together can induce a highly efficient switch from skin-

derived mouse and human fibroblasts into brown fat cells.

As a third example of a transdifferentiation with therapeutic

potential, Deepak Srivastava and colleagues at the University

of California, San Francisco, succeeded in converting mouse

fibroblasts into beating cardiomyocytes with a combination of

Gata4, Mef2c, and Tbx5. Importantly, transplantation of freshly

transduced fibroblasts into the heart of mice showed functional

cardiomyocytes derived from the infected cells 2 weeks after

transplantation (Ieda et al., 2010).

Finally, two studies have shown that ablation of the transcrip-

tion factor Bcl11b results in mice that have no T cells but

instead an increased number of NK-T cells (Li et al., 2010a,

2010b). When Bcl11b was deleted in committed T cell progen-

itors in culture, they switched into cells with natural killer

(NK) cell properties at nearly 100% efficiency. Remarkably,

the induced NK cells killed tumor cells in vitro and prevented

tumor metastasis in vivo (Li et al., 2010b). These and other

direct lineage conversions selectively covered in this review

are illustrated in Figure 3. Although the phenotype of the

transdifferentiated cells might not be identical to that of their

normal counterparts, the fact that they function in vivo raises

hopes that specific transcription factor perturbations can

eventually be harnessed to generate therapeutically useful cells

‘‘a la carte.’’

Crossing Germ Layers: Converting Fibroblasts

into Neurons

One of the fundamental questions in the reprogramming field

that remained difficult to answer for a long time was whether

transcription factors can induce direct conversions between
STEM
developmentally distant cells, such as between cells belonging

to different germ layers. In an early attempt to address this

issue, we ectopically expressed C/EBPa and its cofactor

PU.1 in fibroblasts and found that the cells acquired a macro-

phage-like morphology, gene expression pattern, and phago-

cytic capacity (Feng et al., 2008), although they were not stably

reprogrammed because inactivation of the exogenous tran-

scription factors led to their reversion into fibroblasts. However,

Marius Wernig and colleagues at Stanford University (Palo Alto,

CA) described definitive experiments showing that a cocktail of

transcription factors can convert mouse and human fibroblasts

into functional neurons (Pang et al., 2011; Vierbuchen et al.,

2010) and, more recently, hepatocytes into neurons (Marro

et al., 2011). In all of these cases, the cells retained their newly

acquired phenotype even when the exogenous factors were

inactivated and thus appeared to be stably reprogrammed.

These results show that it is possible to drive changes in cell

states across germ layer barriers (mesoderm-ectoderm and

endoderm-ectoderm). Of note, the approach used for the

fibroblast-to-neuron conversion experiments, as well as others

that require several transcription factors for transdifferentiation,

was inspired by that used for iPSC reprogramming (Takahashi

and Yamanaka, 2006; see also review by Yang et al., 2011, this

issue).

Reprogramming to Pluripotency
In my opinion, Shinya Yamanaka’s discovery that somatic cells

can be reprogrammed into pluripotent cells represents the single

most important finding in the stem cell/differentiation fields in the

50 years since John Gurdon demonstrated that somatic cell

nuclei have the potential to generate all germ layers in an adult

animal. Almost overnight, Yamanaka showed that the arguably

most important change induced after somatic cell nuclear
Cell Stem Cell 9, December 2, 2011 ª2011 Elsevier Inc. 511
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Figure 4. Reprogramming to Pluripotency
The figure outlines the methodology developed by Takahashi and Yamanaka for mice and humans (Takahashi et al., 2007; Takahashi and Yamanaka, 2006) as
modified by Maherali et al. (2008). The micrographs (courtesy of Matthias Stadtfeld and Konrad Hochedlinger) illustrate the changes in morphology of skin-
derived fibroblasts infected with retroviruses carrying Oct4, Sox2, Klf4, and Myc, with a Nanog-driven GFP reporter for iPSC formation. The process is very
inefficient, typically occurring in less than 1%of the cells. A selection of alternative combinations of transcription factors capable of generating human andmouse
iPSCs are indicated in the box (Feng et al., 2009; Han et al., 2010; Yu et al., 2007, 2009).
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transfer, the switch to pluripotency, can be reproduced in culture

with just a fewmolecules (Figure 4). This finding opened up a vast

number of new research avenues that are being pursued in

hundreds of laboratories around the globe and raised great

hopes for regenerative medicine, although accumulating

evidence suggests that iPSCs are quite heterogeneous and not

necessarily identical to embryonic stem cells (ESCs) (see for

example Kim et al., 2010). I will not further discuss the discovery

of iPSC reprogramming, because this has been covered exten-

sively in several excellent reviews (Hochedlinger and Plath,

2009; Orkin and Hochedlinger, 2011; Silva and Smith, 2008;

Stadtfeld and Hochedlinger, 2010; Sterneckert et al., 2011;

Yamanaka, 2009a, 2009b; Yamanaka and Blau, 2010). In addi-

tion, the reader is referred to an entertaining and informative

talk given by Yamanaka at the U.S. National Institutes of Health

in 2010, in which he describes his path to iPSC reprogramming

(http://www.youtube.com/watch?v=AD1sZU1yk-Y).

The Ups and Downs of ‘‘Transdifferentiation’’
Acceptance of the concept that the lineage of cells can be

switched was slow to come. I still remember my deep embar-

rassment when, after a presentation of our preliminary findings

about GATA-1-induced lineage conversion at a 1993 meeting

in Austin, Texas, a prominent developmental biologist briskly

walked out, murmuring ‘‘. all artifacts of cell lines and overex-

pression!’’ Then, 8 years later, Tariq Enver visited me at the

Albert Einstein College of Medicine in New York and gave

a talk about the effects of GATA-1 in programming multipotent

cells to the erythroid lineage. He had observed a large increase

in erythroid colonies and interpreted these results as evidence

for an instructive effect of GATA-1 on cell fate choice. When I
512 Cell Stem Cell 9, December 2, 2011 ª2011 Elsevier Inc.
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saw his data I said, ‘‘Tariq, I bet what you see is the reprogram-

ming of committed myeloid precursors.’’ Tariq gave me a long

incredulous look and responded, ‘‘These GATA-1 effects could

simply point to a selective mechanism whereby GATA-1 allowed

the survival and proliferation of covertly committed erythroid

cells without altering their initial commitment decisions.’’ We

agreed that this problem could not be resolved in multipotent

cells that retained erythroid potential. So he went home to test

the idea directly by expressing GATA-1 in committed myeloid

cells. A few months later, I got an e-mail that started: ‘‘You

were bloody right.’’ By using clone-marking and daughter cell

experiments, his lab showed that myeloid precursors infected

with an inducible form of GATA-1 generated erythroid colonies

when GATA-1 was induced and granulocyte/macrophage colo-

nies in the controls (Heyworth et al., 2002). After his ‘‘conver-

sion,’’ Tariq concluded, ‘‘Our results demonstrate that the cell

type-specific programming of apparently committed primary

progenitors is not irrevocably fixed, but may be radically respe-

cified in response to a single transcriptional regulator’’ (Heyworth

et al., 2002). However, such gain-of-function experiments still do

not formally define the role of GATA-1 in specifying the commit-

ment of multipotent progenitors in vivo.

In the meantime, at the turn of the century the field experi-

enced a burst of papers claiming that during normal develop-

ment blood cells can turn into neurons, cardiomyocytes, and

liver cells; muscle and neural cells into blood cells, etc. Unfortu-

nately, attempts to reproduce these claims failed. To rigorously

examine whether cells can physiologically transdifferentiate,

Amy Wagers, Irving Weissman, and colleagues at Stanford

University used GFP-labeled hematopoietic stem cells in mice

whose hematopoietic system had been destroyed by irradiation.

http://www.youtube.com/watch?v=AD1sZU1yk-Y
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They concluded that transdifferentiation of circulating hemato-

poietic stem cells and/or their progeny into distantly related cells

is an extremely rare event, and whenever observed it is mostly

attributable to cell fusions (reviewed in Wagers and Weissman,

2004). By using lineage-tracing experiments, Matthias Stadtfeld

in my group reached similar conclusions (Stadtfeld and Graf,

2005). The claims of physiological conversions gave the term

‘‘transdifferentiation’’ somewhat shady connotations for the

years to follow and reinvigorated some of the old skeptics.

When in 2004 Rudolf Jaenisch visited me in New York, I asked

him, euphoric by our recent finding that B cells can be transdif-

ferentiated into macrophages, what he thought about the idea

of testing whether transcription factor combinations could repro-

gram fibroblasts into ESCs. Rudolf replied emphatically, ‘‘you

are totally out of your mind, that is never going to work.’’ Rudolf’s

main argument was that the two cell types are developmentally

so far apart that chromatin modifications would present an insur-

mountable barrier. Reflecting this attitude, after Yamanaka first

presented his results at a Keystone meeting in 2005, skepticism

prevailed among the colleagues I talked to. And during that same

year we submitted an article to a high-profile immunology journal

showing that C/EBPa and PU.1 can reprogram committed T cell

progenitors into macrophages and dendritic cells. The paper

came back unreviewed: ‘‘It is the editorial policy of the journal

not to publish articles that are based on overexpression experi-

ments.’’ That turned out to be bad timing, because only one year

later, after Yamanaka’s discovery of iPSCs, the gates were

opened and the journal started publishing lineage conversion

experiments. So, ironically perhaps, the tremendous impact of

the iPSC reprogramming discovery helped restore the reputation

of transcription factor-induced transdifferentiation (or ‘‘lineage

conversion,’’ as it was less controversially called [Zhou and

Melton, 2008]), leading to a renewed and sustained explosion

of papers reporting transcription factor-induced conversion of

one specialized cell type into another. The number of papers

listed in PubMed under the terms ‘‘transdifferentiation’’ and

‘‘iPS cell reprogramming’’ reflect these developments. The tran-

sient increase of transdifferentiation papers between 1999 and

2004 represent the ‘‘physiological transdifferentiation’’ bubble,

while the steep increase after 2006 is at least in part attributable

to the discovery of iPSC reprogramming (Figure 5). As a footnote

it should be added that there are credible examples of both

physiological and pathological transdifferentiation, such as the

endothelial-blood cell transition in embryonic development

(Eilken et al., 2009; Zovein et al., 2008) or the epithelial-mesen-

chymal transition during tumor formation (discussed in Slack,

2007; Yang and Weinberg, 2008).

The Future of Reprogramming
At this point, new lineage conversions are reported almost

every month, for example the switch of fibroblasts into hepa-

tocytes (Huang et al., 2011; Sekiya and Suzuki, 2011).

However, the hurdles that remain for use in cell therapy are still

formidable, whether the cells are obtained by direct lineage

conversion or iPSC reprogramming, making it hard to predict

whether and when these approaches will enter the clinic and

which will ultimately prevail (Cohen and Melton, 2011). Today’s

explosion in cell reprogramming research recapitulates that of

cancer research between the late 1970s and the 1990s
STEM
propelled by the discovery of retroviral oncogenes. Although

oncogene research did not lead to the rapid development of

new cancer therapies, as had been widely expected, the

wealth of knowledge for the understanding of basic cellular

processes has been enormous and some of it has been trans-

lated into the clinic. Similarly, cell reprogramming experiments

have already dramatically increased our understanding of cell

differentiation and enabled the creation of tissue culture

models for human cell degenerative diseases that could not

be studied previously.

The discovery of transdifferentiation and iPSC reprogram-

ming is only a decade or so old and many basic questions

remain to be resolved. How do the mechanisms of transcrip-

tion factor-induced transdifferentiation and iPSC reprogram-

ming differ? How does the regulatory network of one cell

collapse while a new one is generated? How important is the

role of chromatin modifications in these processes? Why

does only a minority of the cells respond during iPSC reprog-

ramming and what happens to the others? Future research in

cellular reprogramming will undoubtedly generate new discov-

eries beyond our current imagination, with likely potential for

benefiting human health.
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